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Functionalized Surfaces

Payoff:Payoff:

To enable the USN to access environmentally sensitive bodies of water
worldwide.  Additional benefit using same approach to make reactive
surfaces for management of pesticides used by DoD.

-Chelation Surfaces
Transition- Facilitation

and

-Catalytic Properties of
Chelating Polymers.
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Breakout into 2 major task areas:Breakout into 2 major task areas:



Contributors



Environmental Standards for Heavy Metals

How Clean?How Clean?

-Drinking water standards:

• Cu 0.001 ppm
• Pb 0.015 ppm
• Hg 0.002 ppm

-Receiving water standards:

 • < whatever it happens to be.

-Navy Jet Fuel

•Cu 0.010 ppb



Present Picture

DoD-Related Problems with Heavy MetalsDoD-Related Problems with Heavy Metals

- Small arms ranges
- Underwater hull maintenance
- Aircraft wash racks
-Bilge water
-Cu in jet fuel (non-environmental)

Present SolutionsPresent Solutions

-Neutralization/precipitation ( 50 ppm) --Electrolytic recovery (  50 ppm)

-Capping/vitrification  (n.a.) -Ion exchange/adsorption (  1 ppm)



Issues for Jet Fuel Copper Removal

  - The majority of fuels will be degraded with as little as 10 – 15 ppb copper

   - Dissolved copper can induce chemical changes in jet fuel

•  catalyzes thermal oxidation in hot sections of jet engine

•  induces deleterious chemical changes in ambient storage

−  greatly accelerates engine nozzle coking

−  Increases maintenance frequency

  - Estimated $10M / year cost of nozzle replacement

  The Impact of Dissolved Copper in JP-5The Impact of Dissolved Copper in JP-5

Strategies for Dealing with Dissolved Copper in JP-5

  - addition of soluble copper chelant (metal deactivating additives)

•  soluble copper complex is thermally unstable – liberates copper in hot sections

•  thermal stability test (JFTOT) issues with metal deactivator additives



Scenario

Immobilization on Solid SurfaceImmobilization on Solid Surface
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General Procedure for Immobilizing 
DETA-Silane to Silica Gel
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Parameters for optimization of procedure:Parameters for optimization of procedure:

• Silica gel mesh-size: 20-60, 70-230,... (70-230 best)
• Ratio of silane to silica: from 1:8 to   2: 1 (1:1)
• Pre-treatment of silica: dry or not, acid wash or not? (no pretreatment ok)
• Solvent choice: toluene, methylene chloride, etc (toluene)
• Water as catalyst: add water or use naturally adsorbed water?(Don’t add water)
• Annealing:

sequence of washing and baking?  (Either ok)
Temperature?  (dry between 60 - 80 Å C)
Time? (24 h)



Comparison of Modified Silica Capacities
(static)

Chelator Mesh Max. Capacity
 (mg Cu/g silica)

Aminopropyl* 230-400 52
Ethylenediamine* 230-400 17
DETA 70-230 51
DETA 30-60 12
Plain Silica 70-230 3

*Commercially obtained samples.
Aminopropyl capacity is excellent, but mesh size is too fine for high
volume flow applications.



DETA-silica glass column with
copper feed

Plastic tubes for jet fuel

Lab-Scale Test Columns
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Cost-Estimates/Technical Issues

Acyclic Polyamine Chelants (DETA)Acyclic Polyamine Chelants (DETA)

•  estimated material cost ~ $0.09 / g modified silica

•  copper capacity ~ 36 mg Cu / g modified silica

•  able to remove copper from Cu-MDA in fuel

•  projected cost of ~ $0.01 / gallon jet fuel containing 1000 ppb Cu

Technical IssuesTechnical Issues

•  verification that DETA-Si exposure removes only copper

•  backpressure / flowrate optimization 

•  solid support particle size, filter medium volume

•  filter housing design

•  capacity indicator design

Scale-Up / Field TestingScale-Up / Field Testing

•   CRDA with Pall Aeropower  and NAVSEA  for scale up engineering

•   Scale-up to 600 gpm (eventually)



Pall, NAVAIR, NRL CRADA

•Joint CRADA with NAVSEA to develop and test technology
for jet fuel copper-removal.

•NRL: Supply and transfer materials and technology
Code 6930 and Code 6120

•NAVSEA: Define testing standards and perform tests

•Pall:  Design and supply filter housing for material



Currently Undergoing Tests

CRDA between
Pall Aeropower
Corporation,
NAVAIR, and
NRL.

Test site at
Pax River
Naval Air
Base



Polymer Approach

•Pre-organize chelator-metal complex (pseudo macrocyclic)

•Lock-in pre-optimized coordination geometry

Alternate polymer approach for greater stability, variety of materials,
and selectivity:



Making Functional Monomers by
Templating
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Crosslinking to Lock in Conformation/Site
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Advantages of Polymers over Solution Catalysis

• Polymer form allows catalysis over a wider range of  pH:

-No precipitation

-No changes in ligand-metal ratios

• Extremely stable.

• Easy separation of products from catalysts.

•  Very cost-effective.

• Enhances efficiency over solution catalysis.  (surprise)



Anticipated Issues

•Distortion of coordination geometry

•Hindrance of chelator motion

•Unfavorable presentation of substrate

•Unavailability of sites

•Diffusion limitations



Chelator Complexes
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Substrates Studied
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Michaelis-Menten Model

S  +  C X P + C
K1

K2

K3

Reaction Rate:

V max = K3Co

dP
dt

= V max
Km +So

 So

Lineweaver-Burk Linearization:
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Apparent rates:



Polymer is an Active Partner

Binding capacity for range of substrate concentrations:

50  -  220 mg MeP/g polymer

Vs.

0.01 - 0.05 mg MeP/g clays
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Relationship of Heterogeneous
Catalysis to Michaelis-Menten Model

A•S P•SA  +  S P  +  S
kA

k-A

kcat kD

k-D

dP

dt
 =  

kcat (1/KA )CACcat

1 +  
CA

KA
+  CPK P

Assuming catalytic step is rate-limiting:

dP

dt
 =  

kcatCcatCA

KA +  CA

For initial-rate method: c.f. M-M equation

dP

dt
 =  

kcatCcatCA

KM  +  CA

Heterogeneous ModelHeterogeneous Model



Nitrophenol Production vs. Initial [MeP]o
(Polymer)
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Survey of Km’s

Substrate Catalyst Km (M)

NPP CuL (solution) 1.2 x 10-3

NPP CuL (polymer) 8.3 x 10-4

BNPP CuL (solution) 2.3 x 10-3

BNPP CuL (polymer) 1.0 x 10-4

MeP CuL (solution) 7.6 x 10-4

MeP CuL (polymer) 5.1 x 10-5



Comparisons with Other Insoluble Polymers

•Previous polymers templated with EDA and DETA:

- NPP rates are similar
- No reactivity against BNPP

•Menger and Tsuno* showed 400x enhancement over a
phosphate triester (c.f. 6 x 105 enhancement)

• Srivatsnan and Verma** reported about 600 and 300 fold rate
increases for NPP and BNPP using another cross-linked
polymer system.

*Menger, F.M., T. Tsuno, J. Am. Chem. Soc. 111, 4903 (1989)
**Srivatsan, S.G. and S. Verma, Chemical Communications, 515-516 (2000).
Srivatsan, S.G. and S. Verma, Chemistry-A European Journal, 7(4) 828-833,
(2001).



Another Way to Increase Hydrolysis Rate?
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Functionalized Cyclononanes (Polymers)
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Functionalized Cyclononane Polymers
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Vmax = 5.0 x 10-9 M/s

Kcat = 4.1 x 10 -5 s -1

Km = 1.8 x 10 -4 M

K   = 1.2 x 10 -2 M

Model Consistent with Data
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What's Next?
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What's Next?

Tune matrix size/shape for different applications

Fine powder (400 m2/g)  for foams or ointments.



What's Next?

•Use binunuclear systems to increase rates.

•Investigate non-hydrolytic catalytic systems.

•Apply lessons to making sequence-specific nucleases
(6.1).

•Develop for decon kits--either pesticides (AFPMB) or CW
agents.

•Incorporate into multilayer, multifunctional coatings  or
filter membranes (6.2).



Catalysis Summary

• Synthesized several metallopolymers.  Polymers have differentiated
activities.

• Demonstrated the broad range of target substrates for our metal-
  chelated catalysts

-monoester phosphates
-diester phosphates
-triester phosphorothionates

• Hydrolysis rates over 6x105 times over uncatalyzed rates.

• Discovered novel property of matrix polymer for strong adsorption of
  organophosphates.



Publications/Patents

Journal Articles

-Chris M. Hartshorn, Jeffrey R. Deschamps, Alok Singh, and Eddie L. Chang,
"Metal-Chelator Polymers as Organophosphate Hydrolysis Catalysts 2: The
effects of substituents and polymeric cross-linkers" (review process, 2001)

-Chris M. Hartshorn, Alok Singh, and Eddie L. Chang, "Metal-Chelator
Polymers as Organophosphate Hydrolysis Catalysts" (submitted, 2001).

-Q. Lu, A. Singh, J. Deschamps, E. L. Chang, Inorganica Chimica Acta 309,
82-90 (2000).

-R.E. Morris and E. L. Chang, Petroleum Sci. and Tech. 18, 1147-1159
(2000).

-A. Singh, P. Puranik, Y. Guo, and E. L. Chang, Reactive and Functional
Polymers 44  79-89 (2000).



-Dhanajay B. Puranik, Yan Guo, Alok Singh,, Robert E. Morris, A Huang, L.
Salvucci, R. Kamin, V. David, and Eddie L. Chang "Copper removal from
fuel by solid-supported polyamine chelating agents",, Energy and Fuels 12,
792-797 (1998).

-A. Singh, D. Puranik, Y. Guo, D. Zabetakis, and E. Chang, "Incorporation
of metal ion binding sites in polymer matrix by metal ion imprinting", Proc.
Matl. Res. Soc. Surface  Controlled Nano-Scale Materials for High Value-
Added Applications, Vol. 501 pp. 199-208 (1998).

D. Puranik, Y. Guo, A. Singh, R.E. Morris, A. Huang, L Salvucci, R. Kamin,
J. Hughes, V. David, and E. Chang, "Removal of copper from fuel by
immobilized heterogeneous chelating agents", Proc. 6Th Intl. Conf. Stability
and Handling of Liquid Fuels., CONF-971014 , U.S. DOE (Giles, H.N., ed.)
13-30 (1998)

Dhanajay B. Puranik, Vikram A. David, Robert E. Morris, and Eddie L.
Chang,"Removal of copper from hydrocarbon fuels using novel
azamacrocycle polymers", Energy and Fuels 11(6) 1311-1312 (1997).

Publications/Patents (cont.)



Patents and Disclosures

-"Immobilized metal-chelator complexes for catalysis and
decontamination of pesticides and chemical warfare nerve-agents" E. L.
Chang, A.N. Singh, Chris M. Hartshorn, and Qin Lu.  Combined Navy Case
Nos. 79,764  and 82,389 (2001).

-Metal complexing (II)" E.L. Chang, R.E. Morris, and D.B. Puranik, N.C.
No. 82,322 (2000).

-"Metal complexing" E. L. Chang, R.E. Morris, and D. B. Puranik, U.S. Pat.
6,077,421 (2000).

"Synthetic polymer matrices consisting of pre-organized chelation sites to
bond metal ions  selectively and reversibly" A. Singh and E. L.Chang, U.
S.Patent  6,248,842 (2001)

CRDA

-Signed CRDA with Pall Aeropower and NAVSEA in 3-way joint project.

Publications/Patents (cont.)
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